If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-20x-24=0
a = -4; b = -20; c = -24;
Δ = b2-4ac
Δ = -202-4·(-4)·(-24)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4}{2*-4}=\frac{16}{-8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4}{2*-4}=\frac{24}{-8} =-3 $
| n/2-7=18 | | 4(x+3)+2=8+5x | | 3x2 + 18x = 0 | | 5/6x−71/30=9/5 | | -10-1x-3x=30 | | 5-(-x-x=-1 | | 2x^2+5x=2x+2 | | 48h+553=553 | | 28=-2d+6 | | 4x-9=8x-14 | | x2-13x=130 | | 17-2p´=4p+5 | | -4x+5(x-5)=-6x+6(1-2x) | | 4x+49=9-6 | | 5+9x-7=4x-2-x | | (9x-11)+(2x+17)=x | | -5=9+c4 | | -7+5x=4x-7 | | -160+10x=-x+115 | | 2/3n+5=11 | | -2=-6x+5x+4 | | -3/x=2 | | -123+4x=-5x+102 | | 8c^2-34c+21=0 | | 5x+130=(8x+151) | | 3x-6=-x+10 | | 4(9t-3)=215 | | 1x-1=1x-20 | | 1x-4=7x+21 | | 10y+8y+3=39 | | 5x+35=4 | | 7x+15=(4x+66) |